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Abstract

What can be computed by a network of n randomized finite state machines communicating

under the stone age model (Emek & Wattenhofer, PODC 2013)? The inherent linear upper

bound on the total space of the network implies that its global computational power is not

larger than that of a randomized linear space Turing machine, but is this tight? We answer

this question affirmatively for bounded degree networks by introducing a stone age algorithm

(operating under the most restrictive form of the model) that given a designated I/O node,

constructs a tour in the network that enables the simulation of the Turing machine’s tape.

To construct the tour with high probability, we first show how to 2-hop color the network

concurrently with building a spanning tree.
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1 Introduction

Synergy, the whole is greater than its parts, is many times true, however in traditional distributed

computing, each node is usually assumed to be as powerful as a Turing machine, hence its local

computational power is equivalent to the global computational power of the whole network. Here,

we address the computational power of a network of randomized finite state machines with a

very weak communication scheme (similar to the communication scheme of the beeping model,

[CK10CK10, AAB+11bAAB+11b]), and show that even under these harsh conditions, synergy can be achieved:

the network as a whole is computationally more powerful than its individual nodes.

Recently, there is a growing interest in the study of networks of sub-silicon devices, including

biological networks [AAB+11aAAB+11a, FK13FK13, NBJ14NBJ14] and networks of man-made nano-devices [MCS11MCS11,

DGS+15DGS+15, CDRR16CDRR16], through the lens of theoretical distributed computing. These are typically

huge networks of primitive devices that nevertheless perform complicated tasks (e.g., an ant colony

that solves problems no small number of ants can), thus raising the following question: How do

limitations on the local computation and communication capabilities of the individual nodes affect

the global computational power of the whole network?

The current paper addresses this question using the stone age (SA) model of Emek and Wat-

tenhofer [EW13EW13] that captures a network of devices with very weak local computation and commu-

nication capabilities. It has been shown in [EW13EW13, Sec. 5 (full version)] that an n-node SA network

with a path topology can simulate a randomized O(n)-space Turing machine, denoted hereafter as

an RSPACE(n) machine. Little is known though about the global computational power of SA net-

works with more general topologies and/or more restrictive communication schemes. In this paper,

we shed some light into this unexplored research domain, proving that RSPACE(n) machines can

be simulated over any network topology of bounded degree by a variant of the SA model where the

nodes have no sender collision detection (see Section 1.11.1).

1.1 Model

Our model follows the stone age (SA) model introduced in [EW13EW13] and used subsequently in

[ELS+14ELS+14, AEK18AEK18]. Throughout, we assume that the communication network is represented by a

finite size connected undirected graph G = (V,E) with node degrees bounded by constant ∆. The

nodes are controlled by randomized finite automata with state space Q, message alphabet Σ, and

transition function τ whose role is explained soon.

Each node v ∈ V of degree dv ≤ ∆ is associated with dv input ports (or simply ports), one

port ψv(u) for each neighbor u of v in G, holding the last message σ ∈ Σ received from u at v.

The communication model is defined so that when node u sends a message, the same message is

delivered to all its neighbors v; when (a copy of) this message reaches v, it is written into port

ψv(u), overwriting the previous message in this port. Node v’s (read-only) access to its own ports

ψv(·) is very limited: for each message type σ ∈ Σ, it can only distinguish between the case where

σ is not written in any port ψv(·) and the case where it is written in at least one port.
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The execution is event driven with an asynchronous scheduler that schedules the aforementioned

message delivery events as well as node activation events.11 When node v ∈ V is activated, the

transition function τ : Q × {0, 1}Σ → 2Q×Σ determines (in a probabilistic fashion) its next state

q′ ∈ Q and the next message σ′ ∈ Σ to be sent based on its current state q ∈ Q and the current

content of its ports.22 Formally, the pair (q′, σ′) is chosen uniformly at random from τ(q, χv), where

χv ∈ {0, 1}Σ is defined so that χv(σ) = 1 if and only if σ is written in at least one port ψv(·).
To complete the definition of the randomized finite automata, one has to specify the initial state

q0 ∈ Q (assumed to be the same for all nodes in the current paper), the set Qout ⊆ Q of output

states that encode the node’s output, and the initial message σ0 ∈ Σ written in the ports when the

execution begins. In addition, SA algorithms are required to have termination detection, namely,

every node must eventually decide on its output and this decision is irrevocable.

Following the convention in message passing distributed computing (cf. [Pel00Pel00]), the run-time

of an asynchronous SA algorithm is measured in terms of time units scaled to the maximum time it

takes to deliver any message or the time between any two consecutive activations of a node. Refer

to [EW13EW13] for a more detailed description of the SA model.

We adopt the communication scheme presented in [AEK18AEK18] that weakens the SA model of

[EW13EW13] in two aspects. First, under the model of [EW13EW13], the algorithm designer could choose an

additional constant bounding parameter b ∈ Z>0, providing the nodes with the capability to count

the number of ports holding message σ ∈ Σ up to b. As done in [AEK18AEK18], in the current paper,

the bounding parameter is set to b = 1. This model choice can be viewed as an asynchronous

multi-frequency variant of the beeping communication model [CK10CK10, AAB+11bAAB+11b].

Second, in contrast to the setting considered in [EW13EW13], the communication graph G = (V,E)

assumed in the current paper may include self-loops of the form (v, v) ∈ E which means, in

accordance with the aforementioned model definition, that node v admits port ψv(v) that holds the

last message received from itself. Using the terminology of the beeping model literature (see, e.g.,

[AAB+11bAAB+11b]), the assumption that the communication graph is free of self-loops corresponds to a

sender collision detection, whereas lifting this assumption means that node v may not necessarily

distinguish its own transmitted message from those of its neighbors u 6= v.

The cruxes of the SA model are that (1) node v cannot distinguish between its ports; and (2)

the number of states in Q and the size of the message alphabet Σ are constants independent of the

size (and any other global parameter) of the graph G.33 The same holds for the size of the transition

function τ , that can be encoded as a Q× 2Σ table whose entries are subsets of Q× Σ.

Sequential Stone Age Machines. We wish to use a SA network to simulate an RSPACE(n)

machineM, but before we can describe this simulation, we have to explain how the O(n)-bit input

1The only assumption we make on the event scheduling is FIFO message delivery: a message sent by node u at

time t is written into port ψv(u) of its neighbor v before the message sent by u at time t′ > t.
2Node v’s actual transition in step t is an atomic operation occurring at the beginning of the step.
3In the current paper, |Q| and |Σ| may depend on the fixed degree bound ∆; the exact dependency is analyzed in

Section 4.3.24.3.2.
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I of M, that is normally stored in M’s tape at the beginning of the execution, is provided to our

network. Clearly, no node in the network can hold more than a constant number of bits, hence

I should be distributed over multiple nodes. Unlike [EW13EW13], where a path topology is assumed,

here the network topology is arbitrary and does not (initially) induce any sequential order on the

nodes, thus storing I in the nodes of the network before the execution starts does not make sense.

Instead, we introduce the key notion of a sequential stone age machine (SSAM), where I is fed to

the SA algorithm bit-by-bit in a sequential fashion through some node.

Formally, given a network G = (V,E), a SSAM is a SA algorithm running on the nodes of G

that allows an external user to

(1) pick any node v ∈ V and send to it a designated I/O prepare message;

(2) wait until v sends a designated I/O ready message;

(3) feed v with a sequence of input bits by means of sending a sequence of designated input messages

(and receiving a corresponding sequence of acknowledgments from v);

(4) wait until the computational process terminates; and

(5) get the desired output back from v by means of receiving from it a sequence of designated

output messages.

We refer to node v picked by the user in (1) as an I/O node. To exploit the combined computational

power of all nodes (in contrast to a single node whose computational power is restricted to that of

a randomized finite state machine), the computational process described in (4) typically involves

the whole network. The SSAM is said to be a (T p, T io)-SSAM if it is guaranteed that the external

user waits at most T p time between sending the I/O prepare message and receiving the I/O ready

message and at most T io time between feeding the input bits and getting back the output bits.

1.2 Our Results

We prove that any problem that can be solved whp by an RSPACE(n) machine in time T can be

solved whp on any n-node bounded degree graph G by an (O(D), O(T ))-SSAM operating under

an asynchronous scheduler, where D denotes the diameter of G;44 in other words, it takes O(D)

time to initialize the SSAM so that it is ready to accept its input, whereas the actual simulation

of the RSPACE(n) machine takes O(T ) time. Specifically, our main algorithmic contribution is a

SA algorithm that given an n-node bounded degree graph G = (V,E) and a designated root node

r ∈ V , constructs a 2-hop coloring of G and a node sequence 〈S(i)〉2n−1
i=0 , referred to as a tour, that

satisfies: (i) every node appears in S exactly twice; (ii) S(0) = S(2n − 1) = r; and (iii) the state

of node S(i) encodes enough information to route a message to S(i + 1 mod 2n) and to S(i − 1

mod 2n) that reaches its destination in O(1) time for every 0 ≤ i ≤ 2n−1; our algorithm terminates

with a correct 2-hop coloring and a correct tour in time O(D) whp.

In the SSAM context, the tour S is constructed during phase (2) (while the external user waits

for the I/O ready message) with the I/O node serving as the root. This tour is then employed to

4Throughout this paper, we say that event A occurs with high probability, abbreviated by whp, if P(A) ≥ 1− n−c,

where n is the number of nodes in the graph and c is an arbitrarily large constant.
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simulate a randomized Turing machineM with a (2n)-cell tape in phase (4) as follows. Node S(i)

simulates the ith cell C(i) in the tape so that the state of S(i) encodes: (a) the current content

of C(i); (b) whether the head of M is currently located at C(i); and (c) the state of M in case

the head is located at C(i). A step of M’s (sequential) execution, where the head moves from cell

C(i) to cell C(i± 1), is implemented by sending a designated ’head moving’ message from S(i) to

S(i± 1) that encodes the new state of M.

1.3 Main Technical Challenges

A 2-hop coloring is a useful construction in anonymous networks (see, e.g., [EPSW14EPSW14]) that en-

ables local point-to-point communication under broadcast communication schemes. As discussed in

[EW13EW13, Sec. 4.3], it is fairly easy to design a 2-hop coloring SA algorithm in bounded degree graphs

with bounding parameter b = 2. However, once the bounding parameter is set to b = 1 (as defined

in the current paper), this becomes a challenging task because the nodes can no longer verify (de-

terministically) that their neighborhood does not admit color conflicts. The setting considered in

the current paper is even harder since the graph may contain self-loops.

Our algorithm resolves this issue by coloring the nodes concurrently with growing a tree T̃

of depth O(D) rooted at the designated root r. The nodes use a randomized test that looks for

color conflicts and if a conflict is detected, the tree T̃ is carefully used to reset the coloring and tree

construction processes. It is interesting to point out that without a designated root, it is impossible

to obtain even a 1-hop coloring in our setting — see Section 55.

Another source of difficulty that we had to overcome when designing our algorithm stems from

the requirement that the algorithm terminates correctly whp. While whp guarantees are common in

traditional distributed graph algorithms, they are more challenging to obtain with SA algorithms:

the individual nodes do not (and cannot) have any notion of n; nevertheless, the algorithm should

err with probability that decreases (polynomially) with n.

1.4 Related Work

Most literature on distributed network algorithms does not deal with computability issues, simply

because the computational power of the whole network is identical to that of a single node (that

is, a Turing machine). Things become more interesting when restrictions are imposed on the

computational power of the individual nodes, in particular, when the nodes are restricted to finite

state machines.

Computational models based on networks of finite state machines have been studied for many

years. The best known such model is the extensively studied cellular automata that were introduced

by Ulam and von Neumann [vN66vN66] and became popular with Martin Gardner’s Scientific American

column on Conway’s game of life [Gar70Gar70] (see also [Wol02Wol02]). A cellular automaton captures a

network of finite state machines, arranged in a grid topology (some other highly regular topologies

were also considered), where the transition of each node depends on its current state and the states

of its neighbors. The SA model, which is inspired by the cellular automaton model, generalizes
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the latter in two aspects: (1) it is applicable to arbitrary network topologies and does not make

any regularity assumptions; and (2) it is applicable to fully asynchronous schedulers and does not

require that the nodes operate in synchrony (although a small fraction of the cellular automata

literature deals with asynchronous node activation [Nak74Nak74, AAC+00AAC+00, Neh03Neh03], it does not support

the concept of asynchronous message delivery).

Another popular model that considers a network of finite state machines is the population

protocols model, introduced by Angluin et al. [AAD+06AAD+06] (see also [AR09AR09, MCS11MCS11]), where the

network entities communicate through a sequence of atomic pairwise interactions controlled by a

fair (adversarial or randomized) scheduler. This model provides an elegant abstraction for networks

of mobile devices with proximity derived interactions and it also fits certain types of chemical

reaction networks [Dot14Dot14].

The neat amoebot model introduced by Dolev et al. [DGRS13DGRS13] also considers a network of finite

state machines in a (hexagonal) grid topology, but in contrast to the models discussed so far, the

particles in this network are augmented with certain mobility capabilities, inspired by the amoeba

contraction-expansion movement mechanism. This model has been successfully employed for the

theoretical investigation of self-organizing particle systems [SOP14SOP14, DGR+14DGR+14, DGR+15DGR+15, DGS+15DGS+15,

DGR+16DGR+16, CDRR16CDRR16, DGP+16DGP+16], especially in the context of programmable matter.

The SA model, that constitutes the heart of this paper, was introduced in [EW13EW13] with the

goal of demonstrating that certain classic distributed graph problems, e.g., maximal independent

set, coloring, and maximal matching, can be solved fast (in polylogarithmic time) by a network of

devices whose computation and communication capabilities are perhaps sufficiently weak to capture

biological cellular networks (cf. [BPEA+01BPEA+01]). Since then, this model was successfully employed in

theoretical studies of distributed computing in other kinds of networks including a series of works

inspired by ant foraging processes [LUSW14LUSW14, ELUW14ELUW14, LKUW15LKUW15, ELS+15ELS+15, CELU17CELU17] as modeled

by Feinerman et al. [FKLS12FKLS12, FK12FK12]. The SA maximal independent set algorithm of [EW13EW13] has

been adjusted to handle dynamic networks too [EU16EU16].

As discussed in Section 1.21.2, the SA algorithm developed in the current paper assumes a unique

root node, where in the SSAM context, the role of the root node is played by the I/O node chosen

by the external user. The task of selecting a unique root node (cf. leader election) under the SA

model has recently been studied in [AEK18AEK18]. This paper also introduces the variant of the SA

model (with a weaker communication scheme, see Section 1.11.1) used in the current paper.

Much of the technical challenge in designing the SA algorithms presented in [EW13EW13, EU16EU16,

AEK18AEK18] stems from the necessity to handle graphs of arbitrary node degrees. In contrast, the focus

of the current paper (that studies a completely different problem) is restricted to bounded degree

graphs and the main technical challenge arises from other factors (see Sec. 1.31.3). In this regard, it

is important to point out that although imposing a constant bound on the node degrees is a severe

limitation from a graph theoretic perspective, in practice, many of the networks that motivate our

model, particularly biological cellular networks, typically exhibit small node degrees.
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2 Preliminaries

Notation and Terminology. Throughout this paper, the degree bound ∆ is regarded as a

constant. In some places, the asymptotic notation is augmented with a ∆ subscript to emphasize

that a ∆ function is hidden, e.g., O∆(n) or Ω∆(log n). Using this notation, notice that the diameter

D of the graph is larger than log∆ n = Ω∆(log n). When the exact dependency on ∆ is more

important, we may also mention it explicitly inside the asymptotic notation.

We denote the shortest distance (in hops) from node u to node v in graph G = (V,E) by

distG(u, v) and omit the subscript G when the graph is clear from the context. The (inclusive) d-

hop neighborhood of v is denoted by Γd+(v) = {u ∈ V | dist(v, u) ≤ d}; when d = 1, we omit it from

the superscript and write simply Γ+(v). Let Γ(v) = Γ+(v) − {v} be the (exclusive) neighborhood

of v. Let Γ∗(v) = Γ+(v) if v admits a self-loop and Γ∗(v) = Γ(v) otherwise. A k-hop coloring of G

is a function c : V → Z>0 satisfying the requirement that c(u) 6= c(v) for every two nodes u 6= v

such that distG(u, v) ≤ k. A 1-hop coloring is often referred to simply as a coloring.

In the context of rooted trees, the terms parent, child, sibling, leaf, depth, and height are used

in their standard meaning (see, e.g., [CLRS09CLRS09]). We also use the term branch for a tree path that

starts at the root. These terms are generalized from a rooted tree to a directed acyclic graph (DAG),

recalling that there, the parent of node v and the branch that ends at v are not necessarily unique.

Finally, for a positive integer k, the set {1, 2, . . . , k} is denoted by [k].

Synchronizer Transformation. As explained in Section 1.11.1, the execution is controlled by an

asynchronous scheduler. One of the contributions of [EW13EW13] is a SA synchronizer implementation

(cf. the α-synchronizer of Awerbuch [Awe85Awe85]). Given a synchronous SA algorithm A whose execu-

tion progresses in fully synchronized rounds t ∈ Z>0 (with simultaneous wake-up), the synchronizer

generates a valid (asynchronous) SA algorithm A′ whose execution progresses in pulses such that

the actions taken by A′ in pulse t are identical to those taken by A in round t.55 The synchronizer

is designed so that the asynchronous algorithm A′ has the same bounding parameter b (= 1 in the

current paper) and asymptotic run-time as the synchronous algorithm A.

Although the model considered by Emek and Wattenhofer [EW13EW13] assumes that the graph

has no self-loops, it is straightforward to apply their synchronizer to graphs that do include self-

loops (see also [AEK18AEK18]). Hence, our algorithm is designed to operate under a locally synchronous

scheduler. Specifically, we assume that the execution progresses in synchronous rounds t ∈ Z>0,

where in round t, each node v

(1) receives the messages sent by its neighbors in round t− 1;

(2) updates its state; and

(3) sends a message to its neighbors (same message to all neighbors).

Notice that under a locally synchronous scheduler, if node u is in round t and node v is in round

5We emphasize the role of the assumption that when the execution begins, the ports hold the designated initial

message σ0. Based on this assumption, a node can “sense” that some of its neighbors have not been activated yet,

hence synchronization can be maintained right from the beginning.
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t′, then it is guaranteed that |t − t′| ≤ dist(u, v). This means that there exists some constant c

so that in any period of c(T + D) time units, every node in the graph performs at least T steps.

Consequently, an upper bound of O(T ) on the number of rounds performed by an arbitrary node,

implies an upper bound of O(T +D) on the total elapsed time.

3 Algorithm Description

In this section, we present our algorithm that constructs the desired (2n)-hop long tour over the

bounded degree graph assuming there is a single distinguished root node.

Overview. At the beginning, all nodes (other than the root) are identical, and as a first step, the

algorithm 2-hop colors them. Given a 2-hop coloring, each node can distinguish between its neigh-

bors and establish a one-to-one communication with each of them. Based on this infrastructure, it

is possible to construct a rooted tree from the distinguished root and build a tour on it.

To build the above on a network of identical randomized finite state machines, we use a layered

approach. The first layer, referred to as the synchronizer layer, runs a synchronizer similar to

those designed in [AAB+12AAB+12, EW13EW13, AEK18AEK18] so that all layers above it operate assuming a locally

synchronous scheduler. The goal of the second layer, referred to as the degree estimation layer, is

for each node to compute its own degree in G. This is done based on a randomized process that

continuously verifies that the current estimate on the number of neighbors is correct. Each time

the estimate is updated, a reset is invoked and the layers above this second layer may be restarted

(more on that later).

In the next, third, 2-hop coloring layer, we rely on each node correctly knowing its degree. The

root starts a process that 2-hop colors the graph and constructs a rooted spanning tree, denoted

by T̃ , at the same time. Upon termination of this process, an echo process up the branches of T̃

(towards the root) is invoked. Tree T̃ is designed so that its depth is O(D) whp. Notice that T̃ ’s

construction assumes all nodes know their accurate degree; if not, the constructed T̃ may be a DAG

(see Section 22), but this will be detected by the degree estimation layer and a reset will (eventually)

be invoked to delete T̃ and restart the tree construction (intertwined with 2-hop coloring) process.

The goal of the fourth and final layer, referred to as the tour construction layer, is to construct

the desired tour. This is done by simulating a depth first search traversal of T̃ in a concurrent

manner. The depth first search procedure is implemented so that when the root terminates, the

tour is ready to be used.

The layer hierarchy is illustrated in Figure 11;66 each block in this figure represents a layer or

a process within a layer. Notice that while the degree estimation and synchronizer blocks work

continually, the echo and tour construction blocks are initiated only after the tree construction

block terminates.

6All figures (and pseudocodes) are deferred to a designated figure appendix.
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3.1 The Layers

Recall that initially, all nodes reside in the initial state q0 and all ports hold the initial letter σ0.

The root starts the synchronizer (as described in Section 22) and any node that reads a message

different than σ0 on any of its ports, starts executing the synchronizer layer and the layers above it

as described below. The bottom layer, the synchronizer, is the only asynchronous layer. All layers

above it operate under a locally synchronous scheduler and make a transition on a round-by-round

basis.

The layers model essentially breaks the state machine in each node into several randomized finite

state machines, one per block (a layer or a process within a layer). The state set Q and message

alphabet Σ are the Cartesian products of the state sets and message alphabets, respectively, of each

block’s state machine. Some blocks make no move until another block enters some specified state

indicating that its task has been completed (for example, all nodes in the neighborhood of node v

must be colored before v can start participating in the tour construction layer).

Below we provide detailed descriptions of the different blocks. For clarity of the exposition,

these blocks are described in a conventional (distributed) algorithmic style, but they can be easily

implemented using a randomized finite state machine. In Section 4.3.24.3.2, we discuss the size of the

state sets and message alphabets of those state machines in more detail. Pseudocode descriptions

of the different blocks are provided in the designated figure appendix.

3.1.1 The Degree Estimation Layer

In each round (working on top of the synchronizer), each node v first randomly draws a label lv

(the word “color” is preserved for the 2-hop coloring procedure) from a set of ∆4 labels and then,

verifies that the number of distinct labels chosen by its neighbors is not larger than its current

deg estimate variable. Otherwise, it updates deg estimate and interrupts the layer above it.

These labels are also used in upper layers but are only useful when then number of current labels

matches the most updated deg estimate. For this reason we set another flag variable safe which

is used to indicate if the current number of labels equals deg estimate. See Pseudocode 11 for a

pseudocode of the degree estimation layer.

3.1.2 The 2-Hop Coloring Layer

A naive algorithm would be for each node in each round to randomly select a color from a suffi-

ciently large (as a function of ∆) palate of colors until it verifies that the number of colors in its

neighborhood is not smaller than the degree estimate given by the layer below. However, neighbors

may have to change their color causing a chain of node re-coloring that may be difficult to control.

Instead, we carefully use the network’s size to our benefit, producing a 2-hop coloring whp. To that

end, we intertwine the coloring trials with a tree construction process, where each node is colored

before joining the tree; this tree, denoted by T̃ , serves as the underlying communication structure

if a reset process is invoked (this will be explained later). Using a BFS like tree construction,
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we guarantee that the depth of T̃ , as well as its construction time, are O(D) whp. However, the

(randomized) 2-hop coloring trials, carried out by the nodes on the boundary of T̃ , may introduce

some level of asynchronicity and thus, T̃ may not be an exact BFS.

The Tree Construction Process. The process of constructing T̃ while 2-hop coloring the nodes

on its boundary is referred to as the tree construction process. The main variables maintained by

this process for each node v are color and p color, storing the color of v and the color of v’s

parent(s) in T̃ , respectively (the plural form corresponds to the case where T̃ is a DAG, rather than

a tree). The values of these variables are reported in every message sent by v.

The tree construction process starts with the root r setting r.color ← 1; following that, the

root transmits a designated join message. Node v receiving a join message for the first time,

initiates its 2-hop coloring trials; when these trials succeed, v joins T̃ .

Specifically, upon receiving the join message for the first time, node v selects the color of one of

the neighbors u ∈ Γ(v) from which a join message was received; it then writes v.p color← u.color

and v.g p color← u.p color, where g p color is another (temporary) variable maintained by v.

Following that, v randomly selects a new color c from the palette [∆4 − {v.p color, v.g p color}]
and broadcasts a request to color itself with color c using a designated color req(c) message. Node

v then waits (for two rounds) for its neighbor’s responses (the process in charge of these responses

is described soon), and if receives approve messages from all of them, then it writes v.color ← c

and broadcasts a join message; otherwise (some neighbors of v did not respond with an approve

message), it starts a new coloring trial. Once v’s color variable is set, we think of it as being part

of T̃ . Notice that the nodes do not record their children in T̃ . See Pseudocode 22 for a pseudocode

of the tree construction process.

The Color Approval Process. The mechanism in charge of approving/disapproving the

color req messages is referred to as the color approval process. This process runs continually

at each node v and its role is to check that when node u ∈ Γ(v) attempts to pick the color c

(reflected by a color req(c) message received from u), no other node in Γ+(v) is (or soon to be)

colored c. This task is trivial to accomplish if all the nodes in Γ+(v) − {u} are already colored.

However, it may be the case that multiple neighbors of v may have not yet chosen a color (which

means that they have not yet joined T̃ ) and thus, may look indistinguishable to v. What if two (or

more) of these neighbors attempt to pick the same color c?

To overcome this problem, we go back to the safe flag of the degree estimation layer. Recall

that this flag is set to true only when the number of distinct labels received by node v is equal to

its deg estimate variable, which means that v can distinguish between all its perceived neighbors.

Therefore, v sends an approve message if (and only if) safe == true and the colors it receives in

the color req messages are consistent with a valid 2-hop coloring given the fixed colors in Γ+(v);

that is, the color req colors are distinct and different from the colors of the nodes in Γ+(v) that

already fixed their colors. See Pseudocode 33 for a pseudocode of the color approval process.
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The Echo Process. An echo process up the branches of T̃ is used to detect the termination of the

tree construction process. Each node v can detect the colors of its children in T̃ — those are simply

the nodes declaring v.color as their parent’s color. When a designated echo message is received

from all its children (at the same round), v starts sending echo messages until its parent sends its

own echo message. The execution of the echo process together with the tree construction process

forces all the nodes of the network to execute at least D rounds, which is critical to guarantee the

high probability success of the degree estimation layer as D > log∆ n. See Pseudocode 44 for a

pseudocode of the echo process.

3.1.3 The Tour Construction Layer

The tour construction layer lays out a (2n)-hop long tour of the network based on the 2n timestamps

of a depth first search (DFS) traversal of T̃ (see, e.g., [CLRS09CLRS09, Section 22.3]). Recall that these

timestamps are integers in {0, 1, . . . 2n− 1} and that the DFS traversal assigns two of them to each

node v: one for the time 0 ≤ v.d ≤ 2n − 2 at which v is discovered by the DFS traversal and one

for the time 0 ≤ v.f ≤ 2n − 1 at which the DFS traversal backtracks from v. We construct the

desired tour 〈S(i)〉2n−1
i=0 so that S(v.d) = S(v.f) = v.

The DFS timestamps have the following important property: if one of the timestamps of node

u is in {v.d ± 1, v.f ± 1}, then u is either v itself, the parent of v, a child of v, or a sibling of v.77

The nodes cannot store the actual timestamps (this would have required Ω(log n) bits), however,

node S(i) can store the colors of the nodes along the unique paths in T̃ from S(i) to S(i ± 1). If

the 2-hop coloring is valid, then this information enables one-to-one communication between S(i)

and S(i ± 1). The aforementioned property ensures that each one of these two paths includes at

most two hops, so in total, the tour construction layer stores at most 8 colors of the palette [∆4]

at each node v.

These colors are stored in the designated forward pointerd, backward pointerd,

forward pointerf , and backward pointerf variables that correspond to S(v.d + 1), S(v.d − 1),

S(v.f + 1), and S(v.f − 1), respectively. Each pointer encodes the empty path from v to itself

or the path to a child, parent, or sibling of v and thus, consists of at most two colors. Refer to

Figure 22 for an illustration of the forward pointer variables in a tree.

The role of the tour construction layer is to set those pointers so that the resulting tour reflects

the DFS traversal of T̃ . This is done concurrently at all nodes, without actually running a DFS

traversal. This construction could have been totally local, without sending any message, if the nodes

would have been fully aware of the color assignment in their 2-hop neighborhood in T̃ . However,

this would have been expensive in terms of the size |Q| of the state set (making it exponential,

rather than polynomial, in ∆ — see Section 4.3.24.3.2). Instead, the 2-hop coloring layer constructs

T̃ so that each node stores only its parent. To overcome this obstacle, each node v instructs its

children on how to set their pointers, helping them connect to their siblings and to v itself, without

knowing all of their colors at the same time. The method employed in this regard is iterative,

7The arithmetic done in this section is modulo 2n.
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trading space for time, by connecting one child node at a time. This method is invoked at v right

after the echo process has ended (and v stopped sending echo messages). See Pseudocode 55 for a

pseudocode of the tour construction layer.

3.1.4 Resets

The algorithm described thus far may err if a node in T̃ under-estimated its degree. In this case

the 2-hop coloring may be invalid which means that T̃ may be a DAG (rather than a tree) and the

tour constructed based on T̃ may be wrong. Therefore, if a degree under-estimation is detected,

the data structures of the 2-hop coloring and tour construction layers must be deleted and re-

constructed from scratch. This can be detected in two possible ways: (1) when a node in the

degree estimation layer increases its deg estimate variable; or (2) when a node receives different

messages with the same color field (which means that they come from different neighbors that

were not distinguished so far). The former condition is checked by the degree estimation layer(see

Pseudocode 11); the latter is checked by a designated validity check process that runs continually.

See Pseudocode 66 for a pseudocode of this process. In both cases, if a degree under-estimation is

detected, a designated reset interrupt is signaled.

The process that catches the reset interrupts is referred to as the reset process. As mentioned

earlier, this process resets the flags and variables maintained by the 2-hop coloring and tour con-

struction layers. (We emphasize that the deg estimate variable and the variables maintained by

the synchronizer layer are not affected by a reset.) But before these flags and variables can be reset

at node v, we must make sure that the the reset process is invoked at all other nodes in T̃ . This

can be tricky as an independent reset interrupt may be signaled at some node u while the reset

process initiated by v spreads in the network.

To overcome this obstacle, we follow the reset technique introduced in [AAG87AAG87], and execute the

reset process as follows. (1) A node receiving a reset interrupt initiates a reset request only if it

has already joined T̃ (otherwise no reset is initiated by this node). (2) The reset request messages

are forwarded up the branches of T̃ (towards the root). (3) Upon receiving a reset request

message, the root broadcasts freeze command messages that are forwarded to all nodes in T̃ down

its branches. (4) Upon receiving a freeze command message, each leaf echos a freeze ack message;

each internal node sends a freeze ack message to its parent after it receives freeze ack messages

from all its children. (5) When the root is fully acknowledged with the freeze ack messages

(and thus knows the entire T̃ is frozen), it broadcasts reset command messages that are forwarded

to all nodes in T̃ down its branches. (6) Upon receiving a reset command message, each leaf

echos a reset ack message; each internal node sends a reset ack message to its parent after it

receives reset ack messages from all its children. At this stage, the (leaf or internal) node resets

all flags and variables of the 2-hop coloring and tour construction layers. When the root is fully

acknowledged with the reset ack messages, it restarts the 2-hop coloring and tour construction

layers from scratch.

Notice that the nodes reset and remove themselves from T̃ from the leaves up towards the root,
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so T̃ never decomposes into several subgraphs. Moreover, the freeze phase in the reset process

ensures that T̃ does not continue growing in an uncontrolled manner while a reset is in motion.

Finally, notice that the reset process works as long as T̃ is a DAG and does not rely on a tree

topology. See Pseudocode 77 for a pseudocode of the reset process.

4 Analysis

Due to space limitations, this extended abstract contains only parts of the analysis; refer to the

attached full version for the complete analysis. Recall that the 2-hop coloring layer generates a

subgraph T̃ that consists of all colored nodes with an edge connecting vertex u to vertex v if

u.color = v.p color; for the sake of convenience, we orient this edge from u to v and think of T̃

as a directed graph.

Lemma 4.1. T̃ is a DAG. Moreover, r is the unique source in T̃ .

Proof. T̃ is constructed by each node v picking a parent u by saving u’s color c. Node u might

not be the only neighbor of v colored with c, so when v joins T̃ an edge between all its neighbors

colored with c to v itself is also constructed. There are no cycles because each node v’s color is

picked to be different from u.color and u.p color. Each edge in T̃ is from a parent node toward

one of its children. The root does not pick any parent, so it does not have any incoming edges and

it is a source. The rest of the nodes in T̃ pick a parent so they are not sources.

Besides the T̃ construction process, the reset process is another place in the algorithm where T̃

is changed and another source vertex might be created. But, the reset process progresses towards

the root so the T̃ never decomposes into several sub graphs, and the root always stays the only

source vertex in T̃ .

4.1 Correctness with High Probability

The desired tour construction relies on the correctness of the 2-hop coloring. The latter allows node

v to communicate in a one-to-one fashion with each of its neighbors u, which in turn, supports one-

to-one communication with more distant nodes w provided that the colors along some (v, w)-path

are known. The correctness (whp) of our 2-hop coloring scheme is based on three foundations:

(1) Once all nodes hold an accurate degree estimation, a valid 2-hop coloring is reached with no

further resets with probability 1 (see Corollary 4.44.4).

(2) After O(log∆(n)) rounds of the degree estimation layer, each node holds an accurate degree

estimation whp (see Corollary 4.64.6).

(3) All nodes execute Ω(log∆(n)) rounds of the degree estimation layer before termination (see

Lemma 4.104.10).

Lemma 4.2. Consider a tree construction process that starts after all nodes hold an accurate

degree estimation. Let w be some node and let u, v ∈ Γ+(w), u 6= v, be two nodes in T̃ . Then,

u.color 6= v.color.
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Proof. Nodes u and v are colored since both are in T̃ . Assume by contradiction that u.color =

v.color = c. Recall that a node can fix its own color only in a round at which it receives approve

messages from all its neighbors. Let tu and tv be these rounds for u and v, respectively, from the

perspective of w (that is, in w’s round counting). Assume without loss of generality that tu ≤ tv.

If tu = tv, then w approved u.color ← c and v.color ← c in the same round. The design of

the color approval process guarantees that w.safe was true at that round, which means that the

number of distinct labels received by w at that round was w.deg estimate. The assumption that

all deg estimate variables were accurate when the tree construction process started implies that

u and v picked distinct labels. But this means that the color approval process at w witnessed a

color conflict in that round and did not send an approve message, reaching a contradiction.

If tu < tv, then w approved v.color← c after u has already fixed its color to u.color = c. But

the design of the color approval process guarantees that if v tries to pick color c, then w does not

send an approve message, again reaching a contradiction.

Corollary 4.3. If a tree construction process starts after all nodes hold an accurate degree estima-

tion, then T̃ will not experience a reset.

Proof. A reset is initiated either because some node updates its deg estimate variable (the degree

estimation layer), which cannot happen due to the assumption, or because two different messages

carrying the same color field are received (the validity check process), which cannot happen by

Lemma 4.24.2.

Corollary 4.4. Once all nodes hold an accurate degree estimation, a valid 2-hop coloring is reached

within finite time with probability 1.

Observation 4.5. For a label set of size ∆4, in every round of the degree estimation process, the

number of distinct labels received by node v equals its degree with probability 1−O(1/∆2).

Proof. Follows immediately from a birthday paradox argument since |Γ∗(v)| ≤ ∆ + 1.

Corollary 4.6. For a label set of size ∆4, after O(log∆(n)) rounds of node v’s degree estimation

layer, v holds an accurate degree estimation whp.

4.1.1 Enough Rounds

We now turn to establish a lower bound on the number of rounds executed by the degree estimation

layer of each node before T̃ ’s construction terminates. The correctness of the algorithm will follow

by Corollary 4.44.4 and Corollary 4.64.6.

The degree estimation layer operates underneath the 2-hop coloring layer and independently of

its phase (i.e., tree construction or echo). We shall establish the desired lower bound by analyz-

ing the tree construction and echo processes of the 2-hop coloring layer, showing that they take

sufficiently many rounds. To that end, we think of the tree construction and echo processes as a

locally synchronous broadcast-echo process. The goal in this section is to prove that although this
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broadcast-echo process may halt prematurely due to coloring defects, it still takes sufficiently many

rounds. In this regard, we ignore (for the time being) the coloring trials that may slow down the

broadcast phase of this process even further (recall that we are aiming for a lower bound now).

Lemma 4.7. Consider some node v ∈ V at distance dist(r, v) = x from the root r. Under a locally

synchronous scheduler, a broadcast initiated by r at its t0r round arrives to v at its t0r + x round.

Proof. We mark by m(x) a message that has traveled x hops before it again was sent. For example

r’ initiative message is m(0) and its children following messages are m(1). We prove the lemma by

induction on x.

Message m(0) is sent by r when it initiates the tree construction at its t0r round. Under locally

synchronous scheduler, r’s neighbors have to proceed to their t0r+1 in order to process m(0) because

it was sent at someone round t0r of execution. So, m(1) is sent from all nodes distant from r by one

hop at their t0r + 1 round of execution. Let’s assume by induction that all nodes distant from the

root by x hops have received and processed m(x) messages at their t0r + x round. Let u be a node

such that dist(r, u) = x+1 and let v be a node that sent m(x) to u on v’s t0r +x round. Node u can

process m(x) only when it is at its t0r + x+ 1 round. When it does, it will respond by broadcasting

m(x+ 1).

Color defects in the 2-hop coloring may lead to indistinguishable neighbors in T̃ , thus reducing

T̃ from a rooted tree to a DAG. We have to ensure that this does not result in the “disappearance”

of large sub-trees.

Lemma 4.8. Consider the time at which all nodes have joined T̃ . There exists at least one branch

(r = v0, v1, . . . , vx) in T̃ with x = Ω(log∆(n)) such that vi−1, vi, and vi+1 are colored (pairwise)

differently for every 0 < i < x.

Proof. Let v be a node that maximizes distG(r, v) and let x be its depth in T̃ . By definition,

distG(r, v) ≥ Ω(D) ≥ Ω(log∆ n), hence x ≥ Ω(log∆ n). When a node picks a color in the tree

construction process, it can pick any color but its parent’s color and its grandparent’s color, therefore

for any 0 < i < x, it holds that vi.color 6= vi−1.color and vi.color 6= vi+1.color.

Notice that Lemma 4.84.8 does not imply that vi can distinguish vi+1 from other children it may

have in T̃ , but the lemma does ensure that vi is aware of the fact that it has at least one child

whose color is vi+1.color. Combined with the properties of the locally synchronous scheduler, we

can bound the minimum number of rounds each node completes before the echo process of the

2-hop coloring layer terminates.

Observation 4.9. Consider the branch (r = v0, v1, . . . , vx) promised by Lemma 4.84.8. If vx completes

its role in the echo process at its round t, then node vi does not complete its role in the echo process

before at its round t+ (x− i).

Proof. Follows by a simple induction on x − i since the echo process is designed so that a node

transmits its first echo message only after all its neighbors transmitted echo messages and it stops

transmitting echo messages once its parent transmits an echo message.
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Lemma 4.10. When the echo process terminates, it is guaranteed that every node performed

Ω(log∆(n)) rounds.

Proof. Suppose that r initiated the tree construction process at its round t. Let v be a node that

maximizes distG(r, v) = H and observe that H = Ω(D) = Ω(log∆(n)). Let t1 be v’s round at which

v received a join message for the first time and let t2 be v’s round at which v completed its role in

the echo process. We showed in Lemma 4.74.7 that t1 ≥ t+H, so also t2 ≥ t+H. By Observation 4.94.9,

we conclude that if r terminates the tree construction process at its t′ round, then t′ ≥ t2 + H,

hence t′ − t ≥ 2H.

Since t > 0, it follows that the degree estimation layer of r has made at least 2H rounds by

the time the echo process terminates. Since distG(r, u) ≤ H for every node u, the properties of

the locally synchronous scheduler ensure that the degree estimation layer of any node has made at

least H rounds by that time. The assertion follows as H = Ω(log∆(n)).

4.2 Resets

Recall that the DAG T̃ constructed by the 2-hop coloring layer may be deleted (together with

the corresponding 2-hop coloring) due to a reset. In this section, we address the correctness of

the reset process, proving that every reset can be mapped injectively to a node that initiated a

reset request message and that every node that initiated such a message, performs a reset (and

deletes itself from T̃ ) within finite time. Moreover, if node v initiates a reset request message over

DAG T̃ , then, within finite time, we reach a configuration in which T̃ is deleted and the network

does not contain any reset messages.

Lemma 4.11. Let T̃I be the DAG T̃ when a reset request was initiated by one of its nodes and

let height(TI) = H. Let T̃F be the DAG that T̃ grew into before the reset was completed. Then,

height(T̃F ) = O(H).

Proof. All reset messages proceed one hop at a round with no delays. This rate is at least twice as

fast as the rate which nodes join T̃ because of the inherent delay caused by each node needing to

get its color approved. After a node joined T̃ and picked a new color, it has to wait two executions

that assures that the following time it wakes up all responses to its new color are going to be in its

ports. This rates difference imply that height(T̃F ) = O(height(T̃I)) = O(H).

Lemma 4.114.11 plays a key role in establishing the following observations as it guarantees that the

distance in T̃ between any two nodes is O(H), irrespective of the stage of the reset process.

Observation 4.12. If node v sends a reset request message at round t, then it receives a

freeze command message from some of its parents by round t+O(H).

Proof. By Lemma 4.14.1 T̃ is a DAG with a single source r. Following the logic of Lemma 4.74.7 we

can show that the reset request arrives at r at r’s t′ = t+O(H) round, and its freeze command

response then arrives at v at its t′ +O(H) = t+O(H) round.
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Observation 4.13. If node v sends a freeze command message at round t, then it receives

freeze ack messages from all its children by round t+O(H).

Proof. Let (v = v0, v1, . . . , vx) the branch that goes from v to its farthest leaf vx ∈ T̃ . By Lemma 4.74.7,

the freeze command arrives at vx at its t′ = t+O(H) round. Following the logic of Observation 4.94.9,

v sends freeze ack at its t′′ = t′ +O(H) = t+O(H) round.

Observation 4.14. If node v sends a freeze ack message at round t, then it receives a

reset command message from some of its parents by round t+O(H).

Proof. Proof Similar to that of Observation 4.124.12.

Observation 4.15. If node v sends a reset command message at round t, then it receives

reset ack messages from all its children (and performs a reset) by round t+O(H).

Proof. Proof Similar to that of Observation 4.134.13.

Lemma 4.16. If node v sends a reset request message during round t of the root, then there

exists a round t′ ≤ t+ O(H) of the root at which T̃ is deleted completely and the network is clean

of reset messages.

Proof. By Observation 4.124.12 we know that if v initiated a reset request at its round t, then r

initiated a freeze command at some round of r t1 = t + O(H). Implying Observations 4.144.14, 4.144.14

and 4.154.15 on r we conclude that on some round t′ of r it received reset ack from all its children

and reset itself, where t′ = t1 +O(H) = t+O(H). At r’s t′ round T̃ is deleted completely and no

reset message can go over it.

4.3 Algorithm’s Performance and Resources

4.3.1 Run-Time

We divide the algorithm’s execution into three stages: stage (1) that lasts from the beginning of

the execution until the last reset is over; stage (2) that lasts from the end of stage (1) until the

echo process of the 2-hop coloring layer reaches the root; and stage (3) that lasts from the end of

stage (2) until the tour construction terminates. Let T1, T2, and T3 be the run-times of the first,

second, and third stages, respectively.

Corollary 4.64.6 guarantees that after each node v executed O(log∆(n)) rounds, it holds an accurate

estimation of its degree whp. This means that whp, v will not initiate a new reset after executing

O(log∆(n)) rounds. On the other hand, Lemma 4.164.16 guarantees that a reset initiated by some

node will disappear from the network after O(H) rounds of the root, where H is T̃ ’s height. In

Corollary 4.204.20, we prove that H = O∆(D), hence T1 = O∆(D).

The second stage contains the tree construction and echo processes. The run-time of the latter

is O(H), which is O∆(D) by Corollary 4.204.20, whereas the former is intertwined with coloring trials
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that may delay its progression and require a more delicate analysis. This analysis is concluded in

Corollary 4.194.19, showing that the run-time of the tree construction process is O(D+log n) = O∆(D).

The tour construction layer is designed so that once node v completes its role in the echo process

of the 2-hop coloring layer, it completes its role in the tour construction layer in O(∆) additional

rounds. Thus, the run-time of the third stage is T3 = O(∆). To conclude, the total run-time of our

algorithm is T1 + T2 + T3 = O∆(D).

A color req(·) trial of node v succeeds when the following two conditions are satisfied for every

node u ∈ Γ∗(v): (1) the safe flag of u is true; (2) u does not witness a color req(·) conflict in

Γ∗(u). We show that these two conditions are satisfied with probability close to 1.

Lemma 4.17. Assuming that no reset interrupt is signaled in Γ+(v), every color req(·) trial of

node v succeeds with probability 1−O(1/∆).

Proof. Fix some node u ∈ Γ∗(v). By Observation 4.54.5, the safe flag of u is true with probability

1−O(1/∆2). Since the nodes use a color palette of size ∆4 and since |Γ∗(u)| ≤ ∆ + 1, we deduce

by a birthday paradox argument that the probability that u witnesses a color req(·) conflict in

Γ∗(u) is O(1/∆2). The assertion follows by a union bound argument over all nodes u ∈ Γ∗(v).

Lemma 4.18. Suppose that the root r starts a new tree construction process at round t0 and let T̃

be the constructed DAG. If node v with distG(r, v) = x joins T̃ during round t1 of r, then whp (1)

t1 − t0 ≤ O(x+ log n); and (2) the depth of v in T̃ is O(x+ log n).

Proof. Let π = (r = v0, v1, . . . , vx = v) be a shortest (r, v)-path in G. When a node is trying to

pick a color, it may go through successive color req(·) trials until one of them is approved. The

actual order in which the nodes in π are colored is not necessarily identical to the order induced

by π, but after x color req(·) trails in π are approved, all nodes in π are colored.

Assuming that no reset interrupt is signaled in Γ+(v), we prove in the attached full version

that every color req(·) trial of node succeeds with probability 1−O(1/∆). The number of failed

color req(·) trials in π is stochastically dominated by a negative binomial random variable N with

parameters x and 1 − p, where p = 1 − O(1/∆) ≥ Ω(1) Therefore, we have to up-bound N + x

which accounts for the total number of color req(·) trails in π, including the approved ones. Using

standard tail bounds on the negative binomial distribution, we conclude that N +x = O(x+ log n)

whp.

Starting from r’s round t0, after r executed at least (c+ 1)x+ c · log(n) = O(x+ log n) rounds,

it is ensured by the properties of the locally synchronous scheduler that all nodes at distance at

most x from r executed at least c(x + log n) rounds. Therefore, all these nodes have fixed their

color and joined T̃ whp, so their depth in T̃ is at most O(x+ log n).

Corollary 4.19. Suppose that the root r starts a new tree construction process at round t0 after

all nodes hold an accurate degree estimation. Then, this process is completed within O(D + log n)

rounds of r.

17



Corollary 4.20. Any DAG T̃ constructed by the tree construction process satisfies height(T̃ ) ≤
O∆(D) whp.

Proof. Let v be a node at distance x ≤ D from r. By Lemma 4.184.18, we conclude that v joins T̃ in

r’s t0 +O(D + log n) round whp, implying that its depth in T̃ is O(D + log n) = O∆(D).

4.3.2 Protocol’s Constants

When discussing the resources of a SA algorithm, we distinguish between the state space size |Q|
and the communication alphabet size |Σ|. In the development of the algorithm, we strove to reduce

|Q| and |Σ| to make them polynomial in ∆ which means that each state in Q and each message

in Σ can be encoded with O(log ∆) bits. In this section we go through the algorithm’s layers and

explain in general terms why |Q| and |Σ| are indeed polynomial in ∆.

Recall that the state space Q and the alphabet Σ are the Cartesian products of the individual

layers’ state spaces and alphabets, respectively. We establish the desired upper bounds by showing

that each layer requires (i) a state space of size ∆O(1); and (ii) ∆O(1) different message types. (We

emphasize that these O(1) expressions are universal constants that do not hide a dependency on

∆.)

Observation 4.21. The degree estimation layer requires a state space of size O(∆) and O(∆3)

different message types.

Proof. First, this layer’s state holds its current degree estimation and if it has a new estimation

from last round. This sums up to 2 · ∆ states. Second, the labels that are encoded in the single

message of the layers are taken from the labels’ set is size ∆3.

Observation 4.22. The 2-hop coloring layer requires a state space of size O(∆8) and O(∆12)

different message types.

Proof. This layer’s state embody the following information: (1) node’s phase in the layer’s algorithm

(waiting for a join message, trying to color itself, waiting for other nodes responses, waiting for

subtree acknowledgment, and different reset phases). These all sum up to a constant c1. (2) node’s

data: color, parent’s color and if it is a root node. Totally the needed states amount is O(∆2·4).

Regrading the alphabet, each message sent by a node contains: its color (as a source address),

receivers color (destination address) its parent’s color, its 2-hop-neighborhood coloring status (ac-

cept/ decline/ cannot decide.) and message type (join , color req, tree creation ack, reset

messages). So, the message contains three colors and other fields that are taken from small sets of

options. So, this layer requires O(∆3·4) messages.

Observation 4.23. The tour construction layer requires a state space of size O(∆16) and O(∆12)

different message types.

Proof. The tour construction layer’s state holds the tour representation by four pointers, each is a

color, so together this layer requires O(∆4·4) states. The messages are instructions on how to fill
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pointers containing the source color, the destination color, the instruction type and another color

to fill a pointer with. Together this layer’s possible messages amount is O(∆3·4).

5 The Necessity of our Assumptions

As discussed in Sec. 1.11.1, from the perspective of the algorithm designer, the model considered in the

current paper is weaker than that of [EW13EW13] in the sense that the bounding parameter is restricted

to b = 1 and the graph may contain self loops (cf. [AEK18AEK18]). At the same time, the current paper

makes two simplifying assumptions:

(1) the node degrees are bounded by some constant ∆; and

(2) the algorithm is provided with a unique I/O node and although this node is chosen arbitrarily,

it may still serve as a (unique) leader, thus facilitating the design of the SSAM.

Assumption (1) is clearly mandatory for the construction of the 2-hop coloring as the number of

colors is an inherent lower bound on the number of states. Whether a 2-hop coloring is indeed a

prerequisite for a SSAM is left as an open question; we conjecture that the answer to this question

is positive. Assumption (2) is justified by the following two lemmas.

Lemma 5.1. At the absence of a designated root node, there does not exist any SA algorithm that

solves the (1-hop) coloring problem on a simple path with self-loops with failure probability bounded

away from 1.

Lemma 5.2. At the absence of a designated root node, there does not exist any SA algorithm that

solves the 2-hop coloring problem on a simple path without self-loops with failure probability bounded

away from 1.

The proofs of Lem. 5.15.1 and 5.25.2 are based on probabilistic indistinguishability arguments,

similar to those used in many distributed computing negative results, starting with the classic

leader election impossibility result of Itai and Rodeh [IR90IR90] (see also [AEK18AEK18]).

Proof of Lem. 5.15.1. Our attention in this proof is restricted to algorithms operating under a fully

synchronous scheduler on graph family {L	
n}n≥1, where L	

n is a simple path of n nodes augmented

with self-loops. Assume by contradiction that there exists an algorithm A as in the lemma’s

statement and let Σ denote its message alphabet. Consider the execution of A on the instance L	
1

and let v be the (single) node in this instance. By definition, there exist a color c, constants p > 0

and `, and message sequence S ∈ Σ` such that when A runs on this instance, with probability at

least p, node v reads message S(t) in its (single) port in round t = 1, . . . , ` and chooses color c at

the end of round `.

Now, consider graph L	
n for some sufficiently large n whose value is determined later on and let

v1, . . . , v2`+2 be any 2`+ 2 contiguous nodes in the underlying path of L	
n , referred to as a gadget.

The key observation now is that when A runs on L	
n , with probability at least q = p2`+2, both

middle nodes v`+1 and v`+2 in the gadget receive the same message S(t) in (all) their ports in round
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t = 1, . . . , ` and both choose color c at the end of round `, independently of the random bits of

the nodes outside the gadget. We refer to this event, which clearly leads to an invalid output, as

a gadget failure. Since p and ` are constants that depend only on A, q = p2`+2 is also a constant

that depends only on A.

Take z to be an arbitrarily large constant. If n is sufficiently large, then we can embed y = dz/qe
disjoint gadgets in L	

n . When A runs on L	
n , each of these y gadgets fails (independently) with

probability at least q. Therefore, the probability that A returns a valid output is at most (1− q)y.

The assertion follows since this expression tends to 0 as y →∞ which is obtained as z →∞.

The proof of Lem. 5.15.1 essentially shows that no SA algorithm can distinguish between L	
1

and L	
n with a bounded failure probability. Regarding Lem. 5.25.2, we can use a very similar line

of arguments to show that no SA algorithm can distinguish between L2 and Ln with a bounded

failure probability, thus establishing the lemma.
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FIGURES

2-Hop Coloring

Color Approval

Tour Construction

Tree Construction Echo

Degree Estimation

Synchronizer

Affected by a reset

Figure 1: The layers Hierarchy. The blocks correspond to the layers and the processes within

the layers. The horizontal axis represents sequential dependencies in the algorithm, whereas the

vertical axis represents parallel execution.

Pseudocode 1 The operation of the degree estimation layer at node v.

1: pick a random label `v ∈r [∆4]

2: transmit `v

3: receive `u from each u ∈ Γ∗(v)

4: λ← number of distinct `u messages

5: if λ > v.deg estimate then

6: update v.deg estimate← λ

7: signal the 2-hop coloring and tour construction layers with a reset interrupt

8: else if λ == v.deg estimate then

9: v.safe← true

10: else v.safe← false
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Figure 2: Each node depicts its v.d, v.f timestamps. The dashed red (resp., dotted blue) arrows

correspond to the forward pointerd (resp., forward pointerf ) variables.

Pseudocode 2 The operation of the tree construction process at node v with v.color == null.

1: if received join message m and v.join received == false then

2: v.p color← m.color

3: v.g p color← m.p color

4: v.join received← true

5: if v.join received == true then

6: pick a random color c ∈r [∆4]− {v.p color, v.g p color}
7: transmit color req(c)

8: wait for responses

9: if all received messages are approve then

10: v.color← c

11: transmit join

Pseudocode 3 The operation of the color approval process at node v.

1: if v.safe == true then

2: M ← distinct received messages

3: for all color req(c) message m ∈M do

4: if exists color req(c) message m′ ∈M , m′ 6= m then return . disapprove

5: if exists message m′ ∈M with m′.color == c then return . disapprove

6: transmit approve
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Pseudocode 4 The operation of the echo process at node v.

1: if v.active echo == false then

2: if all received messages m with m.p color == v.color are echo messages then

3: v.active echo← true

4: if v.active echo == true then

5: transmit echo

6: mp ← received message with mp.color == v.p color

7: if mp is an echo message then

8: v.active echo← false

Pseudocode 5 The operation of the tour construction layer at node v.

1: mp ← received message with mp.color == v.p color

2: M ← received messages m with m.p color == v.color

3: let M = {m1, . . . ,mk} so that mi.color < mi+1.color for i = 1, . . . , k − 1

4: if |M | == 0 then

5: v.forward pointerd ← 〈〉
6: v.backward pointerf ← 〈〉
7: else

8: v.forward pointerd ← 〈m1.color〉
9: v.backward pointerf ← 〈mk.color〉

10: if mp is an instruct(c, c′) then

11: if c == v.color then

12: v.forward pointerf ← 〈v.p color, c′〉

13: if c′ == v.color then

14: v.backward pointerd ← 〈v.p color, c〉

15: transmit instruct(v.color,m1.color)

16: transmit instruct(mk.color, v.color)

17: for i = 1, . . . , k − 1 do . one iteration per round

18: transmit instruct(mi.color,mi+1.color)

Pseudocode 6 The operation of the validity check process at node v.

1: for all received messages m do

2: for all received messages m′ 6= m do

3: if m.color == m′.color then

4: signal the 2-hop coloring and tour construction layers with a reset interrupt
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Pseudocode 7 The operation of the reset process at node v.

1: if reset interrupt received then . interrupt handler

2: if v.color 6= null then . v is already in T̃

3: transmit reset request

4: v.state← need freeze command

5: if received reset request message m with m.p color == v.color 6= null then

6: transmit reset request

7: v.state← need freeze command

8: if v.state == need freeze command then

9: if received freeze command message m with m.color == v.p color then

10: v.state← need freeze ack

11: transmit freeze command

12: if v.state == need freeze ack then

13: if all received messages m with m.p color == v.color are freeze ack messages then

14: v.state← need reset command

15: transmit freeze ack

16: if v.state == need reset command then

17: if received reset command message m with m.color == v.p color then

18: v.state← need reset ack

19: transmit reset command

20: if v.state == need reset ack then

21: if all received messages m with m.p color == v.color are reset ack messages then

22: v.state← need halt

23: transmit reset ack

24: if v.state == need halt then

25: transmit reset ack

26: if received reset ack message m with m.color == v.p color then

27: reset flags and variables of the 2-hop coloring and tour construction layers

28: halt reset process at v
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